Summary of Paging **algorithms.** Next to each algorithm name is the description of which page gets evicted when the cache becomes full. We denote the size of the cache by k.

- LRU (Least Recently Used) Page whose most recent access happened furthest in the past.
- FIFO (First-In First-Out) Page which was in the memory the longest.
- LIFO (Last-In First-Out) Page which was in the memory the shortest.
- LFU (Least Frequently Used) Page which was requested the least often.
- FWF (Flush When Full) All the pages.
- RAND An uniformly random page.
- MARK An *unmarked* page uniformly at random. We require that a cached page becomes marked if it is requested. During the eviction, if all pages are marked, we clear the marks. Thus RAND is a (simplest) marking algorithm.
- LFD (Longest Forward Distance) Page whose next request is the furthest in the future. This is an *offline* algorithm.

Deterministic Paging.

- 1. What is the time and space complexity of each paging algorithm in the list above? We do not count the space to store the pages themselves.
- 2. Show that LIFO and LFU are not competitive.

k-Server **problem.**

3. Find an algorithm which computes the offline optimum for k-Server.

Hint. Reduce to MINIMUM-COST MAXIMUM FLOW (the arc costs may be negative).

4. Recall the Double Coverage-Tree (DC-T) algorithm for k-Server on trees, and the fact that Paging is a special case of k-Server on trees. What is the tree for Paging? Which paging algorithm does DC-T correspond to?

Randomized PAGING.

5. Show that RAND is k-competitive.

We use the following potential

$$\Phi_i = k(k - x_i),$$

where x_i is the number of pages common to RAND and the optimum adversary after servicing the i^{th} request.

- a) How can we use the potential to amortize the cost of RAND? What do we want to show about the amortized cost to show k-competitiveness?
- b) Suppose that page r is requested. Depending on whether the adversary has r in their cache or not, analyse the change of potential and the amortized cost.
- c) Can you find an input on which the expected cost of RAND is k-times the cost of optimum?