- 1. The goal of this task is to prove that approximating metrics deterministically is not really possible.
 - Let $C_n = (V, E)$ be a cycle on n vertices and $d_{u,v}$ be the distance between $u, v \in V$ on C_n . Show that for any tree metric (V, T) on the same set of vertices V, there must exist a pair of vertices $u, v \in V$ such that $d_{u,v} = 1$, but $T_{u,v} \ge \Omega(n-1)$.
 - To do this, suppose that of all trees T with optimal distortion α , T has minimum total length. What does T look like?
- 2. In the Universal TSP problem, we are given as input a metric space (V, d) and we must construct a tour π of the vertices. Let π_S be the tour of the vertices $S \subseteq V$ given by visiting them in the order given by the tour π . Let OPT_S be the value of an optimal tour on the metric space induced by the vertices $S \subseteq V$. The goal of the problem is to find a tour π that minimizes $\frac{\pi_S}{OPT_S}$ over all $S \subseteq V$. In other words, we would like to find a tour such that for any subset $S \subseteq V$, visiting the vertices of S in the order given by the tour is close in value to the optimal tour of S.
 - Show that if (V, d) is a tree metric, then it is possible to find a tour π such that $\pi_S = \text{OPT}_S$ for all $S \subseteq V$.
- 3. In the k-MEDIAN problem, we are given a metric (V, dist) and a parameter k. We wish to select a subset $S \subseteq V$ of k centers to minimize the sum of the distances of each location to its nearest center. That is, we wish to select $S \subseteq V$ with |S| = k to minimize $\sum_{j \in V} \min_{i \in S} \text{dist}(i, j)$.
 - Give a polynomial-time algorithm in the case that the metric dist comes from a tree metric (V, T). You can assume that you know the tree T and that T is (w.l.o.g.) a binary tree.
 - Using the algorithm in the preceding part, give a randomized $\mathcal{O}(\log n)$ -approximation algorithm for k-MEDIAN.

This is quite a restriction. However, it is known that even if $V(T) \setminus V \neq \emptyset$, the same result would still hold (albeit with a different multiplicative constant).