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Capacitated k-Center

Input
» graph G = (V, E) with edge lengths /: E — RT,
> integer k,
» capacities c: V — N.

Figure: CKC input with k = 2.



Capacitated k-Center: Goal

Find S C V and an assignment ¢: (V' \' S) — S such that
> |S| <k,
> for every u€ S, |p~(u)| < c(u), and
> max,cy\ s dist(v, ¢(v)) is minimal.

Figure: CKC solution for k = 2.
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Figure: CKC solution for k = 2.

When c(u) = |V/| for every u € V = k-CENTER.



Capacitated k-Center: Solution Prospects

CAPACITATED k-CENTER is NP-hard.

=- cannot solve exactly in polynomial time assuming P # NP.
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Capacitated k-Center: Solution Prospects
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Capacitated k-Center: Solution Prospects

c-approximation algorithm
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I~ — in time O (poly(|/]))

An, Bhaskara, Chekuri, Gupta, Madan, Svensson. 2015
There is a 9-approximation algorithm for CkC.

Cygan, Hajiaghayi, Khuller. 2012

There is no (3 — ¢)-approximation algorithm for CkC
unless P = NP.



Capacitated k-Center: Solution Prospects

c-approximation algorithm

Input / .
— C—apPrOXImatIOn solution at most ¢ times worse
algorithm L) than the optimum

|

|

I~ — in time O (poly(|/]))

Cygan, Hajiaghayi, Khuller. 2012

There is no (3 — ¢)-approximation algorithm for CkC
unless P = NP.

Question
Are there settings where we can overcome this lower bound?
Planar graphs, Euclidean spaces, real world, ...



Special Settings?
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Doubling Dimension (A)

 Highway dimension (h)

CAPACITATED k-CENTER

captures properties of
transportation networks
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S—1

exp { polylog(n) %'/} }
v

Talwar. 2004

Feldmann, Fung, Kénemann, Post. 2018

T: f: computable function
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Highway dimension (h)
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Doubling Dimension (A)

Highway dimension (h)

CAPACITATED k-CENTER

Kk /eOKR) . poly(n)

\(./

Theorem 2

Jc > 1: no c-approximation
in O, (f(k, h) - poly(n))"

Theorem 1
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T: f: computable function

§: unless FPT = W[1]



Doubling Dimension

» Let M = (X, dist) be a metric space.

Figure: B,(u): Ball of radius r.



Doubling Dimension

Doubling dimension A(M): smallest A € N such that




Doubling Dimension

Doubling dimension A(M): smallest A € N such that
» the ball B,(u) for every u € X and every r € R




Doubling Dimension

Doubling dimension A(M): smallest A € N such that
» the ball B,(u) for every u € X and every r € R
» is contained in Uyey B, 2(v) for some V C X with |V] < 24,




Doubling Dimension

Doubling dimension A(M): smallest A € N such that
» the ball B,(u) for every u € X and every r € R
» is contained in Uyey B, 2(v) for some V C X with |V] < 24,

~+ d-dimensional ¢4 metrics have doubling dimension O(d).



Highway Dimension: Shortest Path Cover

» Let G be an edge-weighted graph and fix a scale r € RT.
> Let P, be the set of paths of G such that

P they are a shortest path between their endpoints,
» their length is more than r and at most 2r.
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(a) Metro and tram network in
Prague city center.



Highway Dimension: Shortest Path Cover

» Let G be an edge-weighted graph and fix a scale r € RT.
> Let P, be the set of paths of G such that

P they are a shortest path between their endpoints,
» their length is more than r and at most 2r.

The shortest path cover SPC,(G) is a hitting set® for P,.

For every P € P, we have PN SPC,(G) # 0.



Highway Dimension

highway dimension of an edge-weighted graph G:
P smallest integer h such that,

» for any scale r € R,
» there exists H .= SPC,(G) so that,
» |HN By (u)| < h for every u € V(G).




k-CENTER algorithm

Optimum solution of
= = = cost OPT.
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k-CENTER algorithm

° - Optimum solution of
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® Net: Y C X such that
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e Vyvi £y € Y:d(y,y) > eOPT.

~~ Replace every optimum center by its nearest net point.
= We get a (1 + ¢)-approximate solution.




k-CENTER algorithm

° - Optimum solution of
o '} C ° cost OPT.
[}
° M = (X,d)

® Net: Y C X such that
+Vx € X3dy € Y:d(x,y) <eOPT, and
e Vy1 #ys € Y:d(y1,y2) >eOPT.

~~ Replace every optimum center by its nearest net point.
= We get a (1 + £)-approximate solution.

e It can be shown that |Y| < k(1/¢)O(A).
= Guess the k-tuple near the optimum centers to get an
EPAS with parameters k, ¢, and A.




CKC algorithm obstacles

° - Optimum solution of
o '} C L cost OPT.
° CKC obstacles
° M = (X,d)

Capacities?

® Net: Y C X such that
+Vx € X3dy € Y:d(x,y) <eOPT, and
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~~ Replace every optimum center by its nearest net point.
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EPAS with parameters k, ¢, and A.



CKC algorithm obstacles

SR
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M = (X,d)

Optimum solution of
cost OPT.
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® Net: Y C X such that
+Vx € X3dy € Y:d(x,y) <eOPT, and
e Vy1 #ys € Y:d(y1,y2) >eOPT.

~~ Replace every optimum center by its nearest net point.
= We get a (1 + £)-approximate solution.

e It can be shown that |Y| < k(1/¢)O(A).
= Guess the k-tuple near the optimum centers to get an
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Capacities?



CKC algorithm obstacles

° Optimum solution of
o V" C ° cost OPT.

T

° — | CKC obstacles
° M = (X,d)

® Net: Y C X such that
+Vx € X3dy € Y:d(x,y) <eOPT, and
e Vy1 #ys € Y:d(y1,y2) >eOPT.

~~ Replace every optimum center by its nea
= We € J-approximate solution.
e It cdn be shown that |Y| < k(1/¢)OA).
= Guess the k-tuple near the optimum centers to get an
EPAS with parameters k, ¢, and A.

Solution
recognition?

Capacities?

net point.



Conclusion

Doubling Dimension (A)

Highway dimension (h)

CAPACITATED k-CENTER

Kk /eOKR) . poly(n)

\(./

Theorem 2

Jc > 1: no c-approximation
in O (F(k, h) - poly(n))"*

Theorem 1

k-CENTER

k¥ /eO2) - poly(n)

Feldmann, Marx. 2020

f(k, h,e) - poly(n)t

Becker, Klein, Saulpic. 2018

k-MEDIAN, k-MEANS,
FACILITY LOCATION

2(1/8)O(A2) -poly(n) = N

Cohen-Addad, Feldmann, Saulpic. 2021

p(2h/e)°®

Feldmann, Saulpic. 2021

TSP, STEINER TREE

exp{2°(®) . (4A log n/e)?}

Talwar. 2004

exp { polylog(n) %'/} }
4

Feldmann, Fung, Kénemann, Post. 2018

T: f: computable function

§: unless FPT = W[1]



Conclusion

Doubling Dimension (A)

Highway dimension (h)

CAPACITATED k-CENTER

Kk /eOKR) . poly(n)

\(./

Theorem 2

Jc > 1: no c-approximation
in O (F(k, h) - poly(n))"*

Theorem 1

k-CENTER

k¥ /eO2) - poly(n)

Feldmann, Marx. 2020

f(k, h,e) - poly(n)t

Becker, Klein, Saulpic. 2018

k-MEDIAN, k-MEANS,
FACILITY LOCATION

2(1/8)O(A2) -poly(n) = N

Cohen-Addad, Feldmann, Saulpic. 2021

p(2h/e)°®

Feldmann, Saulpic. 2021

TSP, STEINER TREE

exp{2°(®) . (4A log n/e)?}

exp { polylog(n) %'/} }
4

Talwar. 2004

Feldmann, Fung, Kénemann, Post. 2018

T: f: computable function

§: unless FPT = W[1]

Thank you for your attention!

Questions, comments, ... 7
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